阿里开源 Assistant Agent,助力企业快速构建答疑、诊断智能助手


作者:残风、栀七

更多接入与使用方式,可查看文末微信与钉钉群,与官方维护团队取得联系。

📖 简介

Assistant Agent 是一个基于 Spring AI Alibaba 构建的企业级智能助手框架,采用代码即行动(Code-as-Action)范式,通过生成和执行代码来编排工具、完成任务。它是一个能理解、能行动、能学习 的智能助手解决方案,可帮助企业快速构建智能答疑客服、系统诊断、运维助手、业务助理、AIOps 等智能体。

仓库地址:https://github.com/spring-ai-alibaba/AssistantAgent

技术特性

  • 🚀代码即行动(Code-as-Action) :Agent 通过生成并执行代码来完成任务,而非仅仅调用预定义工具,可以在代码中灵活编排、组合多个工具,实现复杂流程
  • 🔒安全沙箱:AI 生成的代码在 GraalVM 多语言沙箱中安全运行,具备资源隔离能力
  • 📊多维评估:通过评估图(Graph)进行多层次意图识别,精准指导 Agent 行为
  • 🔄Prompt 动态组装:根据场景及前置评估结果动态注入上下文(经验、知识等)到 Prompt 中,灵活处理不同任务
  • 🧠经验学习:自动积累成功经验,持续提升后续任务的表现
  • 快速响应:熟悉场景下,跳过 LLM 推理过程,基于经验快速响应

Assistant Agent 能帮你做什么?

Assistant Agent 是一个功能完整的智能助手,具备以下核心能力:

  • 🔍智能问答:支持多数据源统一检索架构(通过 SPI 可扩展知识库、Web 等数据源),提供准确、可溯源的答案
  • 🛠️工具调用:支持 MCP、HTTP API(OpenAPI)等协议,灵活接入海量工具,可组合调用实现复杂业务流程
  • 主动服务:支持定时任务、延迟执行、事件回调,让助手主动为你服务
  • 📬多渠道触达:内置 IDE 回复,允许通过 SPI 可扩展钉钉、飞书、企微、Webhook 等渠道

为什么选择 Assistant Agent?

适用场景

  • 智能客服:接入企业知识库,智能解答用户咨询
  • 运维助手:对接监控、工单系统,自动处理告警、查询状态、执行操作
  • 业务助理:连接 CRM、ERP 等业务系统,辅助员工完成日常工作

💡 以上仅为典型场景示例。通过配置知识库和接入工具,Assistant Agent 可适配更多业务场景,欢迎探索。

整体工作原理

以下是 Assistant Agent 处理一个完整请求的端到端流程示例:

项目结构

assistant-agent/
├── assistant-agent-common          # 通用工具、枚举、常量
├── assistant-agent-core            # 核心引擎:GraalVM 执行器、工具注册表
├── assistant-agent-extensions      # 扩展模块:
│   ├── dynamic/               #   - 动态工具(MCP、HTTP API)
│   ├── experience/            #   - 经验管理与快速意图配置
│   ├── learning/              #   - 学习提取与存储
│   ├── search/                #   - 统一搜索能力
│   ├── reply/                 #   - 多渠道回复
│   ├── trigger/               #   - 触发器机制
│   └── evaluation/            #   - 评估集成
├── assistant-agent-prompt-builder  # Prompt 动态组装
├── assistant-agent-evaluation      # 评估引擎
├── assistant-agent-autoconfigure   # Spring Boot 自动配置
└── assistant-agent-start           # 启动模块

🚀 快速启动

前置要求

  • Java 17+
  • Maven 3.8+
  • DashScope API Key

1. 克隆并构建

git clone https://github.com/spring-ai-alibaba/AssistantAgent.git
cd assistant-agent
mvn clean install -DskipTests

2. 配置 API Key

export DASHSCOPE_API_KEY=your-api-key-here

3. 最小配置

项目已内置默认配置,只需确保 API Key 正确即可。如需自定义,可编辑 assistant-agent-start/src/main/resources/application.yml

spring:
  ai:
    dashscope:
      api-key: ${DASHSCOPE_API_KEY}
      chat:
        options:
          model: qwen-max

4. 启动应用

cd assistant-agent-start
mvn spring-boot:run

所有扩展模块默认开启并采用合理的配置,无需额外配置即可快速启动。

5. 配置知识库(接入业务知识)

💡 框架默认提供 Mock 知识库实现用于演示测试。生产环境需要接入真实知识源(如向量数据库、Elasticsearch、企业知识库 API 等),以便 Agent 能够检索并回答业务相关问题。

方式一:快速体验(使用内置 Mock 实现)

默认配置已启用知识库搜索,可直接体验:

spring:
  ai:
    alibaba:
      codeact:
        extension:
          search:
            enabled: true
            knowledge-search-enabled: true  # 默认开启

方式二:接入真实知识库(推荐)

实现 SearchProvider 接口,接入你的业务知识源:

package com.example.knowledge;
import com.alibaba.assistant.agent.extension.search.spi.SearchProvider;
import com.alibaba.assistant.agent.extension.search.model.*;
import org.springframework.stereotype.Component;
import java.util.*;
@Component  // 添加此注解,Provider 会自动注册
public class MyKnowledgeSearchProvider implements SearchProvider {
    @Override
    public boolean supports(SearchSourceType type) {
        return SearchSourceType.KNOWLEDGE == type;
    }
    @Override
    public List<SearchResultItem> search(SearchRequest request) {
        List<SearchResultItem> results = new ArrayList<>();
        // 1. 从你的知识源查询(向量数据库、ES、API 等)
        // 示例:List<Doc> docs = vectorStore.similaritySearch(request.getQuery());
        // 2. 转换为 SearchResultItem
        // for (Doc doc : docs) {
        //     SearchResultItem item = new SearchResultItem();
        //     item.setId(doc.getId());
        //     item.setSourceType(SearchSourceType.KNOWLEDGE);
        //     item.setTitle(doc.getTitle());
        //     item.setSnippet(doc.getSummary());
        //     item.setContent(doc.getContent());
        //     item.setScore(doc.getScore());
        //     results.add(item);
        // }
        return results;
    }
    @Override
    public String getName() {
        return "MyKnowledgeSearchProvider";
    }
}

常见知识源接入示例

🧩 核心模块介绍

评估模块(Evaluation)

作用:多维度意图识别框架,通过评估图(Graph)对信息进行多层次特质识别。

┌──────────────────────────────────────────────────────────────────┐
│                    评估图 (Evaluation Graph) 示例                  │
├──────────────────────────────────────────────────────────────────┤
│                                                                  │
│  用户输入: "查询今日订单"                                           │
│          │                                                       │
│          ▼                                                       │
│  ┌─────────────────────────────────────────────────────────┐     │
│  │ Layer 1 (并行执行)                                      │     │
│  │   ┌────────────┐         ┌────────────┐                 │     │
│  │   │ 是否模糊?   │         │ 输入改写     │                 │     │
│  │   │ 清晰/模糊   │         │(增强)      │                 │     │
│  │   └─────┬──────┘         └─────┬──────┘                 │     │
│  └─────────┼──────────────────────┼────────────────────────┘     │
│            │                      │                              │
│            └──────────┬───────────┘                              │
│                       ▼                                          │
│  ┌─────────────────────────────────────────────────────────┐     │
│  │ Layer 2 (基于改写内容,并行执行)                            │     │
│  │   ┌──────────┐   ┌──────────┐   ┌──────────┐            │     │
│  │   │ 检索经验  │   │ 匹配工具  │   │ 搜索知识  │             │     │
│  │   │ 有/无    │   │ 有/无     │   │ 有/无    │             │     │
│  │   └──────────┘   └──────────┘   └──────────┘            │     │
│  └─────────────────────────────────────────────────────────┘     │
│                       │                                          │
│                       ▼                                          │
│            ┌────────────────────┐                                │
│            │ 整合不同维度评估结果  │                                │
│            │ → 传递给后续模块     │                                │
│            └────────────────────┘                                │
│                                                                  │
└──────────────────────────────────────────────────────────────────┘

核心能力

  • 双评估引擎:
    • LLM 评估: 通过大模型进行复杂语义判断,用户可完全自定义评估 Prompt(customPrompt),也可使用默认 Prompt 组装(支持 description、workingMechanism、fewShots 等配置)
    • Rule-based 评估: 通过 Java 函数实现规则逻辑,用户自定义 Function<CriterionExecutionContext, CriterionResult> 执行任意规则判断,适合阈值检测、格式校验、精确匹配等场景
  • 依赖关系自定义: 评估项可通过 dependsOn 声明前置依赖,系统自动构建评估图按拓扑执行,无依赖项并行、有依赖项顺序执行,后续评估项可访问前置评估项的结果
  • 评估结果: 支持 BOOLEANENUMSCOREJSONTEXT 等类型,传递给 Prompt Builder 驱动动态组装
未经允许不得转载:紫竹林-程序员中文网 » 阿里开源 Assistant Agent,助力企业快速构建答疑、诊断智能助手

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
关于我们 免责申明 意见反馈 隐私政策
程序员中文网:公益在线网站,帮助学习者快速成长!
关注微信 技术交流
推荐文章
每天精选资源文章推送
推荐文章
随时随地碎片化学习
推荐文章
发现有趣的