微软:AI 聊天机器人越聊越“笨”,主流大模型在多轮对话中成功率降至 65%


IT之家 2 月 20 日消息,当用户与 AI 聊天机器人进行长对话时,可能会感觉它们变得越来越“笨”,而这种感觉如今有了科学依据。

据 Windows Central 今日报道,微软研究院与赛富时(Salesforce)联合发表的一项研究证实,即使是目前最先进的大语言模型,在多轮对话中的可靠性也会急剧下降。

研究人员对包括 GPT-4.1、Gemini 2.5 Pro、Claude 3.7 Sonnet、o3、DeepSeek R1 和 Llama 4 在内的 15 款顶尖模型进行了超过 20 万次模拟对话分析,揭示出一个被称为“迷失会话”的系统性缺陷。

数据显示,这些模型在单次提示任务中的成功率可达 90%,但当同样的任务被拆解成多轮自然对话后,成功率骤降至约 65%。

研究指出,模型的“智力”本身并未显著下降 —— 其核心能力仅降低约 15%—— 但“不可靠性”却飙升 112%。也就是说,AI 大模型仍然具备解决问题的能力,但在多轮对话中变得高度不稳定,难以持续跟踪上下文。

报告指出,当前大多数模型主要在“单轮”基准测试下进行评估,即一次性接收全部指令的理想实验环境。但现实中的人类交流通常是渐进式的,信息在多轮互动中逐步补充。研究发现,一旦任务被“拆分”到多个回合中,即便是最先进的模型,也容易出现系统性失误。

研究人员进一步分析了造成性能下降的行为机制。

令人意外的是,即使是配备了额外“思考词元”(thinking tokens)的新一代推理模型,如 OpenAI  o3 和 DeepSeek R1,也未能显著改善在多轮对话中的表现。研究还发现,将模型温度参数设置为 0—— 这一常用于确保一致性的技巧 —— 对此类对话衰减几乎没有防护作用。

这一发现对当前 AI 行业的评估方式提出了质疑。研究人员指出,现有的基准测试主要基于理想的单轮场景,忽略了模型在真实世界中的行为。对于依赖 AI 构建复杂对话流程或智能体的开发者而言,这一结论意味着严峻挑战。

目前最有效的应对方式反而是减少多轮往返交流,将所有必要数据、约束条件和指令一次性在单个完整提示中提供,以提高输出一致性。

            <!-- 非定向300*250按钮    17/09  wenjing  begin -->
            <!-- 非定向300*250按钮  end -->
        </div>



Source link

未经允许不得转载:紫竹林-程序员中文网 » 微软:AI 聊天机器人越聊越“笨”,主流大模型在多轮对话中成功率降至 65%

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
关于我们 免责申明 意见反馈 隐私政策
程序员中文网:公益在线网站,帮助学习者快速成长!
关注微信 技术交流
推荐文章
每天精选资源文章推送
推荐文章
随时随地碎片化学习
推荐文章
发现有趣的